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Piston-in-baffle models are generally used to investigate the excitation of acoustic 
waves by "opaque" sources (see, e.g., [1-3]). The mathematical problems are simplified con- 
siderably by this approach, but such models make it difficult to describe phenomena associ- 
ated with multiple wave reflections in layered waveguides. 

Here we develop a factorization procedure applicable to the solution of initial/bound- 
ary-value problems for a compressible fluid, in which a plane "opaque" source is immersed. 
In contrast with [4, 5], we investigate the space-time structure of the wave fields in the 
layer on the basis of a numerical-analytic approach. We derive an asymptotic representation 
of the solution for transient wave radiation and analyze the process of relaxation to steady- 
state harmonic oscillations. 

We consider the excitation of wave fields in a compressible fluid layer by a plane 
source whose transient oscillations are specified by the law 
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V~r = a ~ r 1 7 7  x ~ < o o ( x  = ( x . x ~ ) ~ R ~ ) ,  ( 1 )  

p•  = - - 8 ~ 1 8 t ,  w• = a ~ ] a z ,  V ~ = a~/Ox~-+-O~/Sx~ + 02/0z2; 

z = I O~+lOt = O, (2) 

10, x ~ ,  {0, x ~ Q ,  
z = O  w + - - w _ =  hw, x ~ ,  P+--  p - =  hp, x ~ ,  

z = - - H  O~_ /az=O;  (3) 

t = 0  ~i = 0 ,  O~• = 0 .  

Here (x l ,  x2, z) i s  a Car tes ian  coord ina te  system, the domain a occupied by the source be- 
longs to the XxX coordinate plane, p and C are the density and sound velocity in the layer, 
h+ is the depth of the source, ~ • is the velocity potential in the layer above (+) and below 
(-) the plane of the source, and w• and p• are the vertical components of the velocity and 
the acoustic pressure in the upper and lower sublayers. The computation fulfills the natural 
physical condition decreasing the resolution at infinity for x~+x~- -+oo .  

A velocity jump Aw is given on the surface of the radiator, where it is expressed in 
terms of the velocity functions w• which are known at x e ~. The pressure difference Ap 
and the pressure functions p• at x e ~ are not known. 

The dimensionless quantities in Eqs. (1)-(3) are reduced from their original dimensioned 
counterparts (labeled with an asterisk *) by the relations 

= * z*}/h+,  t = t*(C/h+), ( x .  lx , 
�9 = p•  = p •  w• ~• = 

The i n t e g r a l  equat ion of the  bas ic  problem (1 ) - (3 )  is  formulated by Four ier  i n t e g r a l  
transformation with respect to the coordinates x z, x 2 and Laplace transformation with re- 
spect to the time t in conjunction with superposition of the solutions of the simpler prob- 
lems for the upper and lower layers subject to the matching conditions (2) at the interface 

(z = 0). We have 

~ko(x--a  , s) Ap(a, s) da = / ( x ,  s), x ~ ,  ReS>Sx~>O, 

/(x,  s) = w(x, s) + ~ k l ( X - -  a,  s) Aw(~, s) d~, 
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t i K,~(a,s) e - ~ d a ,  m = 0 , 1 ;  km (x, s) = 
- - o o  

(4) 

sh~Hch?  K 1(~, s) = sh? I t sh?  
Ko(a ,  s) --  ~ c h ? ( H + l ) '  c h y ( H +  I) '  ( 5 )  

w(x, t) = w _ ( x , t ) , 7  ~ = a  m + s  2, a = (~z 1,ct2) ,a = [r I 

(s I is the abscissa of convergence of the Laplace transform, and a is the modulus of the 
wave vector). The integral equation is then solved by factorization. The functional equa- 
tion equivalent to (4) has the form 

K0(~, s)aP(~, s) = F(~, s) + ~(~,  s), 
~ D, Re s > sl ~ 0, F(~, s) = W(~, s) + Kl(a, s)AW(~, s). 

Here  ~ ( a ,  s )  i s  t h e  t r a n s f o r m  o f  t h e  c o n t i n u a t i o n  o f  t h e  known f u n c t i o n  f ( x ,  s )  
and D i s  t h e  common a r e a  o f  r e g u l a r i t y  o f  t h e  f u n c t i o n s  i n v o l v e d  in  Eq. ( 6 ) .  

To s o l v e  Eq. ( 6 ) ,  we i n v e s t i g a t e  t h e  p r o p e r t i e s  o f  t h e  G r e e n ' s  f u n c t i o n  K0. 
i s  a s i n g l e - v a l u e d  a n a l y t i c  f u n c t i o n ,  whose  o n l y  s i n g u l a r i t i e s  a r e  a c o u n t a b l e  s e t  o f  z e r o s  
a = a n k ( S )  and p o l e s  a = q n ( S ) .  

To o b t a i n  a s i n g l e - v a l u e d  d e p e n d e n c e  f o r  t h e  d i s p e r s i o n  r e l a t i o n s ,  we w r i t e  them in  
t h e  fo rm 

a ~  + _ _ i V s  2 2 = 2~_ bnh, bnl = ~ (n - -  l ) / H ,  b~2 = 0,5n (2n - -  l), 

( 7 )  
' q ~ = ~ i ~ Z s  2 + a ~ ,  a ~ = 0 , 5 ~ ( 2 n - - t ) / ( H +  1), n = i - , 2  . . . . .  

(6)  

into R2\~, 

The latter 

where the principal value of the square root is taken as its correct branch, corresponding 
to an odd dependence of the real values of ank and qn for s = -i~ (Im~ = O) on the parameter 

[6 ] .  

The s i n g u l a r i t i e s  o f  K l ( a  , s )  can  be o b t a i n e d  f rom t h e  s i n g u l a r i t i e s  o f  K0(~ ,  s )  by r e -  
p l a c i n g  t h e  s e t  o f  z e r o s  a = a n a •  and a = ~aa3• f o r  bn3 = ~ (n  - 1 ) .  

The a d o p t e d  d i s p e r s i o n  law (7 )  f i x e s  ~nk • and qn • i n  t h e  u p p e r  (+)  o r  l o w e r  ( - )  h a l f -  
p l a n e s  o f  t h e  complex  p l a n e  o f  a i f  R e s  > 0. 

Consequently, for the appropriate choice of perturbing factors w and Aw Eq. (6) is de- 
fined in a strip D, which does not have the indicated singularities and contains the entire 
real axis. Equation (6) can be solved by the method of factorization of functions [7, 8]. 

It is a well-known fact that the solution of the basic problem can be made unique by 
imposing conditions on the contour of the radiator such that the energy boundedness require- 
ment is fulfilled. In the planar case this requirement essentially states that the singu- 
larity of the solution on the line of demarcation of the boundary conditions (X = O) does 
not exceed an amount of the order of IXI -~ in the limit IXI ~ O. 

We carry out the subsequent analysis in the example of symmetric strip radiators (Aw = 
0,  x e R1) .  

The f a c t o r i z a t i o n  me thod  can  be  u s e d  t o  f o r m u l a t e  t h e  f u n c t i o n s  AP(~, s )  and ~ ( a ,  s )  
and, accordingly, to obtain integral representations of the wave fields in the entire medium. 
For example, we obtain expressions for the pressures in the form 

p (x, z, t) - 
4~2i 

�9 -gO > 81~/0, 

Soq-ioo 

so--ira - - 0o  

s sh~(t --z) 
y ch ? ' 

M (o~, z, s) = s ch ? (H + z) 

? sh ?H ' 

lax  + st) de,  

z ~ [ 0 ,  t] ,  

z ~  [ - - H ,  0) 

(8)  

[AP(a, s) depends on the geometry of the domain ~]. 
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i. For a semiinfinite radiator (~: x e [0, 4~)) the solution of Eq. (6) has the form 

~ i ~ l + ,  
~ P = ~ - t ~ - /  V : - - K - , - - C .  

Here we have used the following representations of the factorized functions: 

I I  ~ - a ~  (s) Ko = K + K _ ;  K + (a, s) = ~=1 c~ -- 'l~ (s)' 

(~__} I f F(Dd~  i m a X i m  ~ 

r:t: 

(F• denotes infinite contours in D parallel to the real ~ axis). 

2. For a strip radiator of finite width (~: [x I ~ a) we use the representation �9 = 
~I + ~2 (~i corresponds to the continuous of the right-hand side of Eq. (4) for x > a, and 
~2 has the same significance for x < -a). 

We investigate the general representation of the solution (8) for a pulsed radiator 
with a time-harmonic signal carrier: 

w(x,  t) = b(t)d(x), Ix l<~ a, t > 0, 

b(t) = tNexp (--•  • = x o + ixl, No, X l ) 0  , N ~ 0 .  

We substitute the transforms of the source functions 

( 9 )  

F(o:, s) = B(s)D((z),  B(s) = NI / (s  + • ( 1 0 )  

in Eq. (8) and compute the outer integral, closing the contours in the left half-plane Re s < 
0. We obtain 

h=l,2 ) 

Q = ; l ie s { K o M A P  exp (st), - -  • exp ( - -  iax)  da, 
r l ,  2 ( i i )  

q ~ o (~xp ( -  ~ot)), • > o, i > O, g~,~ = :E inV~ '~ + 0  (t-~'9, 
'r,,~ 1 

[ sin [a n (i --  :)] Z 
anCOSan , [0, t] ,  

M~ (z) = [cos [a n (H -}- z)] 
t ~ ~  ' z ~ [ - - H ,  0); 

1,2 G~ (x, t) = - -  y g~ '2(a )exp( -4  -- izcp~(a, ~))da,  
Yl,2 

~5=t/%, z = l x l - a ,  t > > l ,  q ~ = ( c ~ , ~ ) = p T ( a ) ~ - - a ,  
~t~" (a) ---- - -  ion (a), ( 1 2 )  

~ (~$) R~,'-(=), 
g 1'~ (a) = (O~l+/Os) ]s=z~n 

g0 ( 2,1 (am~) -'~ D (a~))  exp (idOl+m) 

where the coefficients ~1~ +) and ~2~ -) are determined from the following systems on 
systems on the assumption that the transforms of the perturbations functions D(~) do not 
have poles in the upper and lower half-planes of the complex parameter a: 

A ~  ~ =Bj ,  ] =  t, 2, ~o {~o(c~+)}k=~, ~o2__ V ~ 

K + (a~) ~ K + (~m +) exp (ia(z+m) 
A~z = 6kz -  exp (ia(~z + -~ a+)) [K + (~zT)l, = 1A~ [K + (~)1 '  (a+m +a+) (a++a+)  ' 
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~: r  
~ = - .xp (~a+)  K + (~+) ~=~ [~:+ f f : ) ] '  (~+~ + ~-D' 

+~++. D (an~) exp (ia'mn+) 
Q++ -- D (a~) --  K + (a+~) ,= [K+ (~r) ]' ( a+ -5 ~z~+) ' ] ----- t, 2. 

(13) 

The upper or lower sign is chosen in Eqs. (12) and (13) in accordance with the respec- 
tive indices i and 2; s = an• are the inverses of the functions ~ = Dn• and 6ks is 
the Kronecker delta symbol. Here the integrands for a harmonic source (N 0 = 0) can be sin- 
gularities on the real axis ~ = qn-(-iKl) (for Gn I) and ~ = qn+(-iKl) (for Gn2), which the 
contours Pl, 2 bypass via small semicircles in the upper or lower half-plane of ~. Outside 
the neighborhood of these poles Pl, 2 coincide with the real axis. 

3. Poles do not exist in the case of a pulsed source (N 0 > 0), and the integration in 
Gn 1,2 is carried out along the real axis. We subject the integrals in Eqs. (12) to an asymp- 
totic analysis in the limit X § ~,~ ~ const. We use the stationary phase method, allowing 
for the fact that the phase function ~n(~, ~) has two real stationary points for ~ > i: 

~ =  +_ ~# V ~ - ~. 

We find that the acoustic pressures in the domain of disperse interaction are described by 
the equations 

Pl,2 (X, Z, t) = ~ (~2 _ _  t)(2N--3)/4 ~ _312,x 
- V 2 ~  .,~ ~ ( z )  • 

(ian~+• V~  -- l )  (14) 

- -  . ~=~__:.~+~ + 0 ( - 0 ) ,  
( - i % ~ + •  V ~  - 1 )  

%-+oo,  O < z < t ( t <  ~ = c o n s t ) , • 2 1 5  O , 7 5 < O ~ < i , 5  

[the function index i corresponds to a wave propagating to the right of the source (x > a), 
and the index 2 indicates propagation to the left (x < -~]. It follows from Eq. (14) that 
the amplitude of the main disturbances decays with time as t -~ in the limit t § ~ and de- 
cays with distance as X -~ in the limit • § ~. 

The limiting value of ~ = t/x § i (l~st• § ~) corresponds to the leading edge of the 
wave packet. Here the solution (except in the case of shock formation) behaves as It - XI N-l 
(N > i); this fact can be deduced from the integrals (12) by replacing the integrands with 
their asymptotic representations in the limit = § • 

4. In the case of a harmonic radiator that has a time-constant amplitude and is actu- 
ated from the rest state, it must be assumed in the solution (9)-(13) that K 0 = 0, <i > 0, 
and N = 0. The term Q in Eq. (II) is determined from the residues and characterizes the 
steady-state part of the solution. In the domain • < Cnt [Cn -I = 3qn-(--iKl)/3Kl] the inte- 
grands in Eq. (12) decay exponentially in the limit X § ~ on the parts of rl that do not 
coincide with the real axis. The corresponding parts of the integrals Gnl, 2'2 admit a power- 
law estimate O(X -I) in the limit X § ~. The remaining parts of the contours FI, 2 on the 
real axis represent the asymptotic contribution of Gnl, 2, which is calculated as in Sec. 3. 

In the domain X > Cnt we deform the parts of Fz, 2 near the corresponding poles, reflect- 
ing them about the real axis, and then make analogous asymptotic estimates on the new con- 
tours. We obtain 

Pl,2(x,z , t)  =Ql,z~ (x , z , t )  q_gl,2o (x,z . t ) ,  x~-4-a;_ (15)  

QL (x, ~, t) = ~ p  ( -  i• E s U  ( -  i~1) x 

X exp (i%+l~ (-- i• ) H (Cnt -- X), S~ '2 (--  i• = • (z) R~ '2 ( ~  (--  i• (16)  

L = !0,5(t + 2• + t)/~)1, X = lxl  -- a, z ~ ~ .  
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In this solution Qz,2 ~ denotes steady-state undamped wave contributions, which are super- 
imposed on the transient decaying part gi,2 ~ of the solution, i.e., the response of the 
medium, which coincides with Pz,2 (14) if we assume in the latter that N 0 = 0, K I > 0, and 
N = 0. Here L is the number of modes with a real wave number qn(--iKz), n 1 ..... L, gen- 

erated by a harmonic source at a fixed frequency Kz. 

In Eq. (16) each term of the sum represents the contribution of its corresponding mode 

to the generated wave packet. Clearly, the velocity of propagation of the leading edge of 
the corresponding mode coincides with its group velocity. The velocity of the modes decreas- 
es monotonically with increasing mode order at a fixed frequency, i.e., C n > Cn+z for all 
n = 1 ..... L - i. This assertion follows from Eq. (7). 

Obviously, the solution of the harmonic problem discussed in Sec. 4 has resonances; 
this fact is inferred from the representation of the wave field (16) for Ixl > a, where the 
n-th amplitud e of the mode expansion of the field becomes infinite at a fixed resonance fre- 
quency Kn* = a n , n = i, 2, .... In the domain outside the source these resonances coincide 
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with the resonances of the problem for a fluid layer with an immersed point source of dis- 
turbances. In our problem the presence of an "opaque" strip source of finite width changes 
the values of the resonances in the domain Ixl < a above (z e (0, i]) and below (z e I-H, 
0)) the source. We infer from the general representation of the pressure field (ii) that 
the values Kn* = bn2 are critical in the first case, and Kn* = bnl are critical in the sec- 
ond case. It has been shown [8] that the amplitude function grows as t ~ in the limit t + 

at resonances of the layer in the planar problem, in contrast with its logarithmic growth 
at the critical values in the axisymmetric problem [9]. 

We now give some numerical results obtained according to Eqs. (14)-(16) for a pulsed 
source of the form (9) [d = exp(i~x), ~ = 117.8097] with linear dimension a = 0.0133 and 
thickness of the waveguide (i + H) H = 0.3333. Here we use an appropriate factorization 
of the Green's function K0(~, s) in the class of rational functions [8]. 

Figure i shows typical depth distributions of the pressure amplitude in the zone of 
disperse wave interaction at time t = 37.3333 for ~ = t/x = 1.012 (curve i) and 1.501 (curve 
2) in the case of a radiator without a harmonic carrier (K z = 0) for a signal with rise-time 
and decay-time parameters N = 5 and K 0 = 6.4286 (respectively). The first curve corresponds 
to the left grid, and the second curve to the right grid. The structure of the distributions 
depends significantly on the number of modes contributing to the solution. 

The nature of the time distribution of the pressure amplitude (beginning with the ar- 
rival time of the leading edge) for the indicated waveguide at the point with coordinates 
X = 37.3333, z = 0.iiii is shown in Fig. 2. The curves correspond to a source with parame- 
ters N 0 = 0.9643, K z = 0, and N = i0. 

Figure 3 illustrates the dependence of the pressure amplitude on the horizontal coor- 
dinate x for z = 0.Iiii at time t = 37.3333 in the case of a pulsed source with a carrier 
N 0 = 2.3559, K z = 3.2143, N = 5. 

The numerical experiment shows that the domain near the leading edge of the wave packet 
is determined by a finite number of the fastest first modes with allowance for their multi- 
ple reflections. An increasing number of modes contributes to the subsequent structure of 
the domain, but the influence of their multiple reflections diminishes. 
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